Air pollution and lung cancer incidence in 17 European cohorts: prospective analyses from the European Study of Cohorts for Air Pollution Effects (ESCAPE)

Dr Ole Raaschou-Nielsen PhD a, Zorana J Andersen PhD a b, Rob Beelen PhD c, Evangelia Samoli PhD d, Massimo Stafoggia MSc e, Gudrun Weinmayr PhD f g, Prof Barbara Hoffmann MD a b, Paul Fischer MSc i, Mark J Nieuwenhuijsen PhD j, Prof Bert Brunekreef PhD k l, Wei W Xun MPH l, Prof Klea Katsouyanni PhD d, Konstantina Dimakopoulou MSc d, Johan Sommar MSc m, Prof Bertil Forsberg PhD m n, Lars Modig PhD m, Anna Oudin PhD m, Bente Ofstedal PhD n, Per E Schwarze PhD n, Prof Per Nafstad MD n o, Prof Ulf De Faire PhD p, Prof Nancy L Pedersen PhD q, Prof Claes-Göran Östergren PhD r, Laura Fratiglioni PhD s, Johanna Penell PhD d, Michal Korek MSc b, Prof Göran Pershagen PhD b, Kirsten T Eriksen PhD a, Mette Sørensen PhD a, Anne Tjønneland DMSc a, Thomas Ellermann PhD t, Marloes Eeftens MSc c, Prof Petra H Peeters PhD k, Kees Meliefste BSc c, Meng Wang MSc c, Bas Bueno-de-Mesquita PhD j, Prof Timothy J Key DPhil u, Kees de Hoogh PhD j, Hans Concin MD v, Gabriele Nagel PhD f w y, Alice Vilier MSc w z y, Sara Grioni BSc z, Vittorio Krogh MD z, Ming-Yi Tsai PhD aa ab, Fulvio Ricci Phd ac, Carlotta Sacerdote Phd ad, Claudia Galassi MD ad, Enrica Migliore MSc ad, Andrea Ranzi PhD ae, Giulia Cesaroni MSc e, Chiara Badaloni MSc e, Francesco Forastiere PhD e, Ibón Tamayo MSc af, Pilar Amiano MSc ag, Miren Dorronsoro MD ag, Prof Antonia Trichopoulos MD ad ah, Christina Bamia PhD d, Prof Paolo Vineis MPH j, Gerard Hoek PhD s 1

Summary

Background

Ambient air pollution is suspected to cause lung cancer. We aimed to assess the association between long-term exposure to ambient air pollution and lung cancer incidence in European populations.

Methods
This prospective analysis of data obtained by the European Study of Cohorts for Air Pollution Effects used data from 17 cohort studies based in nine European countries. Baseline addresses were geocoded and we assessed air pollution by land-use regression models for particulate matter (PM) with diameter of less than 10 μm (PM$_{10}$), less than 2.5 μm (PM$_{2.5}$), and between 2.5 and 10 μm (PM$_{coarse}$), soot (PM$_{2.5}$absorbance), nitrogen oxides, and two traffic indicators. We used Cox regression models with adjustment for potential confounders for cohort-specific analyses and random effects models for meta-analyses.

Findings

The 312,944 cohort members contributed 4,013,131 person-years at risk. During follow-up (mean 12.8 years), 2,095 incident lung cancer cases were diagnosed. The meta-analyses showed a statistically significant association between risk for lung cancer and PM$_{10}$ (hazard ratio [HR] 1.22 [95% CI 1.03–1.45] per 10 μg/m3). For PM$_{2.5}$ the HR was 1.18 (0.96–1.46) per 5 μg/m3. The same increments of PM$_{10}$ and PM$_{2.5}$ were associated with HRs for adenocarcinomas of the lung of 1.51 (1.10–2.08) and 1.55 (1.05–2.29), respectively. An increase in road traffic of 4,000 vehicle-km per day within 100 m of the residence was associated with an HR for lung cancer of 1.09 (0.99–1.21). The results showed no association between lung cancer and nitrogen oxides concentration (HR 1.01 [0.95–1.07] per 20 μg/m3) or traffic intensity on the nearest street (HR 1.00 [0.97–1.04] per 5,000 vehicles per day).

Interpretation

Particulate matter air pollution contributes to lung cancer incidence in Europe.

Funding

European Community's Seventh Framework Programme.

http://www.thelancet.com/journals/lanonc/article/PIIS1470-2045%2813%2970279-1/fulltext