Atopic Diseases, Allergic Sensitization, and Exposure to Traffic-related Air Pollution in Children

Verena Morgenstern1, Anne Zutavern1,2, Josef Cyrys1,3, Inken Brockow4, Sibylle Koletzko5, Ursula Krämer6, Heidrun Behrendt6, Olf Herbarth7,8, Andrea von Berg9, Carl Peter Bauer4, H.-Erich Wichmann1,10, and Joachim Heinrich1, for the GINI and LISA Study Groups

1Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Epidemiology, Munich, Germany; 2Ludwig-Maximilians University of Munich, Dr. v. Hauner’s Children’s Hospital, Munich, Germany; 3University Augsburg, WZU-Environmental Science Center, Germany; 4Technical University Munich, Children’s Hospital, Munich, Germany; 5Institut für Umweltmedizinische Forschung, Working Area Epidemiology, Düsseldorf, Germany; 6Technical University Munich, Division of Environmental Dermatology and Allergy, ZAUM–Center for Allergy and Environment, Munich, Germany; 7UFZ–Human Exposure Research and Epidemiology at the UFZ Leipzig-Halle, Leipzig, Germany; 8Faculty of Medicine, Environmental Medicine and Environmental Hygiene, University of Leipzig, Leipzig, Germany; 9Marien-Hospital Wesel, Wesel, Germany; and 10Ludwig-Maximilians University of Munich, Institute of Medical Data Management, Biometrics and Epidemiology, Munich, Germany

Rationale: In vitro studies, animal experiments, and human exposure studies have shown how ambient air pollution increases the risk of atopic diseases. However, results derived from observational studies are inconsistent.

Objectives: To assess the relationship between individual-based exposure to traffic-related air pollutants and allergic disease outcomes in a prospective birth cohort study during the first 6 years of life.

Methods: We studied 2,860 children at the age of 4 years and 3,061 at the age of 6 years to investigate atopic diseases and allergic sensitization. Long-term exposure to particulate matter (PM2.5, PM10), absorbance, and nitrogen dioxide (NO2) was assessed at residential addresses using geographic information systems based regression models and air pollution measurements. The distance to the nearest main road was used as a surrogate for traffic-related air pollutants.

Measurements and Main Results: Strong positive associations were found between the distance to the nearest main road and asthmatic bronchitis, hay fever, eczema, and sensitization. A distance-dependent relationship could be identified, with the highest odds ratios (ORs) for children living less than 50 m from busy streets. For PM2.5 absorbance, statistically significant effects were found for asthmatic bronchitis (OR, 1.56; 95% confidence interval [CI], 1.03–2.37), hay fever (OR, 1.59; 95% CI, 1.11–2.27), and allergic sensitization to pollen (OR, 1.40; 95% CI, 1.20–1.64). NO2 exposure was associated with eczema, whereas no association was found for allergic sensitization.

Conclusions: This study provides strong evidence for increased risk of atopic diseases and allergic sensitization when children are exposed to ambient particulate matter.

Keywords: air pollution; GIS; allergic sensitization; allergy

The prevalence of allergic diseases has increased in Europe during the past decades (1), with the increased exposure to traffic-related air pollutants as one speculative reason for this rise in allergic disease. According to the latest assessment of air quality conducted in January 2005 by the European Commission, high concentrations of particulate matter (PM) led to approximately 348,000 premature deaths in the European Union in 2000, despite projected significant reductions in annual PM impact between 2000 and 2020 (2). According to the World Health Organization (WHO), life expectancy is reduced by 8.6 months in the European Union and by 10.2 months in Germany by adverse effects from current levels of PM concentrations (3).

The literature is inconclusive regarding the interaction between traffic-related air pollutants and allergic sensitization. For example, a study in Switzerland found increased allergic sensitization to pollen allergens in adults living close to a major road for more than 10 years (4). However, in another study in Germany, such associations were not observed (5). A number of pediatric studies found inconsistent associations between allergic diseases and exposure to air pollutants (6). Even the use of the highly standardized outcome assessment of the International Study of Asthma and Allergies in Childhood (ISAAC) in two cities in Germany led to conflicting results on the link between hay fever and exposure to traffic-related air pollutants (7, 8). The WHO’s review on the health effects of transport-related air pollution (9) concluded that substantial evidence from controlled human exposure studies (10) and animal experiments (11, 12) indicates that transport-related air pollution can increase the risk of allergy development and exacerbate allergic reaction. However, there is no evidence from long-term clinical trials and only weak evidence from epidemiologic studies to support this conclusion. Due to inconsistent results from available epidemiologic studies (6, 9), it is clear that further research is needed. One possible reason for the inconsistent findings in studies investigating allergies and

AT A GLANCE COMMENTARY

Scientific Knowledge on the Subject

Epidemiologic investigations on exposure to traffic-related air pollutants and atopic outcomes have found inconsistent results.

What This Study Adds to the Field

This study provides strong evidence for the adverse effects of traffic-related air pollutants on atopic diseases, as well as an allergic sensitization, when individual-based exposure assessment strategies are applied.
traffic-related air pollutants could be insufficient exposure assessment (6). Traditionally, data from the nearest air pollution-monitoring site were used to estimate exposure in these studies. In the present study, however, individual estimated exposure levels were derived with GIS (geographical information systems)-based modeling. Only a few studies have combined geographic data with concentration measurements to calculate individual exposure (14–18); yet, they have provided good approximations of long-term average exposures. We applied this exposure model to two Munich birth cohorts: the GINI (German Infant Nutritional Intervention) study and the LISA (Influences of Lifestyle-related Factors on the Immune System and the Development of Allergies in East and West Germany) cohorts.

Data regarding allergy-related health effects to the age of 2 years from these cohorts have previously been published (16, 19). However, children of this age were too young to study asthma and hay fever outcomes. The purpose of this study is to analyze longitudinally the effects of individual-based exposure to traffic-related air pollutants on respiratory and allergic health outcomes. Preliminary results were published as an abstract (20).

METHODS

Study Area

This study was conducted in the Munich metropolitan area. In December 2005, the city of Munich had a population of approximately 1.29 million (21) covering an area of 310 km². The newborns were recruited in obstetric hospitals in the city of Munich. Because several families had moved outside the city boundaries, we extended the study area to the Munich metropolitan area. This includes the surrounding suburbs (Munich rural, Ebersberg, Fürstenfeldbruck, Starnberg, Freising, Erding, and Dachau) covering approximately 1,200 km². For more details, see Morgenstern and colleagues (16).

Study Population

The study population consists of two prospective birth cohort studies (GINI and LISA) in the Munich metropolitan area. Detailed descriptions of the design of these cohort studies have been published elsewhere (22, 23). Briefly, 2,300 children from the GINI birth cohort were selected from the Munich metropolitan area; 1,714 children could be followed up for the first 3 years, 1,900 children within the first 6 years (see Figure 1). The LISA cohort consists of 1,286 children living in the Munich metropolitan area. At 2 years of age, the data of 1,146 children were still in the study and at 6 years 1,166 children were still in the study. Between the second/third year and the sixth year, some children, mainly from the GINI cohort, reentered the study, and for the second/third year some addresses were not available.

According to the availability of the children’s addresses, exposure assessment was calculated at three different time points (birth, 2 or 3 years, and 6 years). The estimated individual air pollution levels at the different time points were then linked with the outcome variables shown in Table 1. The studies were approved by the Bavarian Medical Association (Landesärztekammer Bavaria) and were performed in accordance with the institutional guidelines for the protection of human subjects. Informed consent was obtained from all parents of the participating children.

Questionnaire Data

All data on health outcomes and potential confounding variables were obtained through questionnaires that were completed by the parents. The parents from the LISA cohort members received questionnaires when the children were 6 months, 1 year, 1.5 years, 2 years, 4 years, and 6 years old. In the GINI cohort, the questionnaires were distributed at 1, 2, 3, 4, and 6 years of age. For the investigation at 6 years of age for both the GINI and LISA cohort, the aforementioned ISAAC questionnaires were used.

Definition of the Outcomes

Parents were asked the following: “Has a physician diagnosed any of the following diseases during the past year of life: . . . asthmatic/spastic/obstructive bronchitis, asthma, hay fever, allergic eczema?” If the parents selected yes, the child was defined to have “physician-diagnosed disease,” which was the primary outcome parameter.

The symptoms were obtained using the following question: “Did your child have . . . wheezing attacks, sneezing attacks during the past year of life?” An asthmatic/spastic/obstructive bronchitis/asthma symptom was defined by wheezing, hay fever symptom by sneezing/running/stuffed nose without a cold, and eczema symptom (at 6 yr of age) as ever having itchy skin lesions that lasted for at least 6 months or were present in the preceding 12 months. At 4 years of age, the eczema symptom was defined as having itchy skin during the last 12 months and lasting for at least 2 weeks. For the analysis, the outcomes asthma and asthmatic/spastic/obstructive bronchitis were combined into the variable asthmatic/spastic/obstructive bronchitis.

Assessment of Allergic Sensitization

Specific IgE against common food allergens and inhalant allergens was determined at 6 years of age by standardized methods with CAP-RAST FEIA (Pharmacia Diagnostics, Freiburg, Germany). A screening test for atopy was used to detect specific IgE antibodies against inhalant allergens (SX1: timothy grass, rye, birch, mugwort, house dust mite, cats, dogs, and molds) in the serum. The children who had positive results for

Figure 1. Timing of exposure assessment and available questionnaire data. *Results published in Reference 16.
TABLE 1. DESCRIPTION OF THE STUDY COHORT

<table>
<thead>
<tr>
<th>Variable</th>
<th>Frequency</th>
<th>Age 4 yr</th>
<th>Age 6 yr</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n/Total n</td>
<td>%</td>
<td>n/Total n</td>
</tr>
<tr>
<td>Diseases and symptoms*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Doctor-diagnosed asthma/spastic/obstructive bronchitis/asthma</td>
<td>277/2,545</td>
<td>10.9</td>
<td>187/2,817</td>
</tr>
<tr>
<td>Doctor-diagnosed hay fever</td>
<td>72/2,776</td>
<td>2.6</td>
<td>162/2,807</td>
</tr>
<tr>
<td>Doctor-diagnosed allergic/atopic eczema</td>
<td>281/2,696</td>
<td>10.4</td>
<td>257/2,814</td>
</tr>
<tr>
<td>Symptom for asthma/spastic/obstructive bronchitis</td>
<td>284/2,686</td>
<td>10.6</td>
<td>234/2,626</td>
</tr>
<tr>
<td>Symptom for hay fever</td>
<td>278/2,696</td>
<td>10.3</td>
<td>452/2,862</td>
</tr>
<tr>
<td>Symptom for eczema</td>
<td>432/2,786</td>
<td>15.5</td>
<td>120/2,453</td>
</tr>
<tr>
<td>Allergic sensitization</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inhaled sensitization†</td>
<td>NA</td>
<td>NA</td>
<td>489/1,554</td>
</tr>
<tr>
<td>Outdoor positive‡</td>
<td>NA</td>
<td>NA</td>
<td>287/1,352</td>
</tr>
<tr>
<td>Indoor positive‡</td>
<td>NA</td>
<td>NA</td>
<td>186/1,352</td>
</tr>
<tr>
<td>Confounding variables</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female sex</td>
<td>1,398/2,693</td>
<td>51.6</td>
<td>1,486/2,881</td>
</tr>
<tr>
<td>Parental atopy</td>
<td>1,484/2,810</td>
<td>52.8</td>
<td>1,385/3,061</td>
</tr>
<tr>
<td>ETS at home</td>
<td>545/2,631</td>
<td>20.7</td>
<td>573/2,881</td>
</tr>
<tr>
<td>Maternal education</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Less than 12 grades</td>
<td>1,894/2,696</td>
<td>70.3</td>
<td>1,909/2,725</td>
</tr>
<tr>
<td>12 or more grades</td>
<td>1,058/2,696</td>
<td>39.2</td>
<td>1,074/2,725</td>
</tr>
<tr>
<td>Siblings</td>
<td>1,163/2,652</td>
<td>43.9</td>
<td>2,229/2,867</td>
</tr>
<tr>
<td>Use of gas for cooking</td>
<td>228/2,674</td>
<td>8.5</td>
<td>222/2,861</td>
</tr>
<tr>
<td>Home dampness</td>
<td>183/2,676</td>
<td>6.8</td>
<td>89/2,861</td>
</tr>
<tr>
<td>Indoor molds</td>
<td>817/2,675</td>
<td>30.5</td>
<td>415/2,755</td>
</tr>
<tr>
<td>Keeping of pets</td>
<td>555/2,666</td>
<td>20.8</td>
<td>856/2,873</td>
</tr>
<tr>
<td>Cat</td>
<td>246/2,660</td>
<td>9.3</td>
<td>346/2,869</td>
</tr>
<tr>
<td>Dog</td>
<td>132/2,660</td>
<td>5.0</td>
<td>196/2,869</td>
</tr>
</tbody>
</table>

Definition of abbreviation: ETS = environmental tobacco smoke.

* Doctor-diagnosed diseases refer to parental reports of doctors’ diagnoses, whereas symptoms refer to parental reports only.
† Including timothy grass, rye, birch, mugwort, house dust mite, cat, dog, and molds.
‡ Including timothy grass, rye, birch, and mugwort.
§ Including house dust mite, cat, dog, and molds.

SX1 were tested for single specific allergens. Sensitization to pollen allergens (outdoor) included timothy grass, rye, birch, and mugwort, and sensitization to indoor allergens included house dust mite, cats, dogs, and molds. Inhaled sensitization and specific allergen sensitization were defined as any specific IgE antibody value of 0.35 kU/L or greater.

Air Pollution Measurements and Exposure Assessment

Details about the air pollution measurements have been described elsewhere (24, 25).

Briefly, 40 measurement sites for PM and NO$_2$ were selected within the city of Munich. Four measurements were taken at each of the 40 sites so that each site was measured in each season once. All measurements were made during 2-week intervals between March 1999 and July 2000. Sampling periods were approximately 14 days, during which the air was sampled for 15 minutes every 2 hours for a total of approximately 42 hours per sampling period. PM$_{2.5}$ (PM of 2.5 μm in diameter and smaller) was assessed using Harvard impactors; PM$_{2.5}$ absorbance from the reflectance of the PM filters (25) and NO$_2$ were measured using Palms tubes (26).

Because it is not feasible to measure personal exposure to traffic-related air pollutants for all study subjects, exposure modeling was used. For each pollutant, a linear model was fitted with a subset of the following characteristics as covariates: distance to different types of roads, length of each type of road within various buffers, land coverage, population, and household density (within a postcode area). The model precision was estimated by cross-validation (16). The same models were then applied to the addresses at birth (GINI and LISA), at 2 years (LISA) or 3 (GINI) years, and at 6 years (GINI and LISA). The distance to the nearest main road was assigned as the minimum distance to the next motorway, federal road, or state road. We also looked at the association between living close to a main road and the allergic disease outcomes. The cutoff for the variable “living close to main road” was 50 m. This was based on the hypothesis that the largest contribution from main streets to the air pollution is expected at short distances. Afterward, we categorized this variable as <50 m, 50–250 m, 250–1,000 m, and >1,000 m to investigate the dose–response relationship in more detail.

Statistical Analysis

We analyzed the association between individual exposure to the traffic-related air pollutants PM$_{2.5}$, PM$_{2.5}$ absorbance, and NO$_2$, and the development of allergic symptoms and diseases with marginal logistic regression models (generalized estimating equations) adjusting for potential confounding factors. The association between the pollutants and allergic sensitization was assessed using multiple logistic regression models. The individual confounders that were used were identified in our previous studies (16, 19). These were sex, parental atopy, parental education, siblings, environmental tobacco smoke at home, use of gas for cooking, home dampness, indoor molds, and keeping of pets. Because measurements on the same experimental unit are likely to be correlated, repeated measurements analysis must account for that correlation. One way of doing this is modeling the covariance structure of an individual’s response. The first-order autoregressive covariance structure models so that the covariance of measurements that are close together in time are higher than the covariance for measurements further apart. In addition, the age of the child as a continuous variable was entered into the models to remove the confounding effects of growth of the child on the health–exposure relationship.

Using this approach allows to adjust the individual-based air pollution estimates at three different time points (the birth addresses [GINI and LISA], the 2- [LISA] or 3- [GINI] year addresses, and 6-year addresses [GINI and LISA]). All odds ratios (ORs) are presented as an interquartile range increase in air pollution concentration. Statistical significance was defined by a two-sided α level of 5%, and thus 95% confidence intervals (CIs) were given. All statistical analyses were performed using SAS version 9.01 (SAS Institute, Cary, NC).

RESULTS

Study Population

The characteristics of the study population are summarized in Table 1. The frequency of hay fever and its symptoms increased between the fourth and sixth years of age, whereas the frequency of asthmatic/spastic/obstructive bronchitis and its symptoms and eczema decreased.

The prediction models were applied to the addresses available at the different time points. For descriptive statistics of the individual-based estimated levels of the air pollutants at the two relevant time points, see Table 2. Nearly a quarter (24.4%) of our study population lived less than 50 m from a major street, 37.0% lived between 50 and 250 m, and 9% lived between 250 and 1,000 m from a major street.

Between the 2-/3-year and the 6-year estimates, no considerable changes in air pollution exposure levels were observed.

Relationship between Ambient Air Pollutant Exposure and Allergic Diseases and Symptoms and Allergic Sensitization

The associations between exposure to air pollutants and asthmatic and allergic outcomes are given in Table 3. The associations between exposure to the air pollutants and allergic sensitization are shown in Table 4. After controlling for individual confounders, statistically significant positive associations were found between the pollutant PM$_{2.5}$ absorbance and asthmatic/spastic/obstructive bronchitis and hay fever. NO$_2$ was positively associ-
TABLE 2. ANNUAL AVERAGE CONCENTRATIONS FOR PM$_{2.5}$, PM$_{2.5}$, ABSORBANCE, AND NO$_x$ ESTIMATED FOR THE RESIDENTIAL ADDRESSES

<table>
<thead>
<tr>
<th>Exposure Variable</th>
<th>Min</th>
<th>10th</th>
<th>25th</th>
<th>50th</th>
<th>Mean</th>
<th>75th</th>
<th>90th</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM$_{2.5}$, µg/m3</td>
<td>1.3</td>
<td>6.5</td>
<td>8.3</td>
<td>12.4</td>
<td>11.1</td>
<td>13.1</td>
<td>13.7</td>
<td>15.0</td>
</tr>
<tr>
<td>PM$_{2.5}$, absorbance, 10$^{-5}$ m$^{-1}$</td>
<td>1.1</td>
<td>1.5</td>
<td>1.6</td>
<td>1.7</td>
<td>1.7</td>
<td>1.8</td>
<td>2.0</td>
<td>5.3</td>
</tr>
<tr>
<td>NO$_x$, mg/m3</td>
<td>8.0</td>
<td>28.4</td>
<td>31.4</td>
<td>34.5</td>
<td>34.7</td>
<td>37.8</td>
<td>39.3</td>
<td>58.4</td>
</tr>
</tbody>
</table>

TABLE 3. ASSOCIATION (ODDS RATIOS) BETWEEN AN INCREASE (PER INTERQUARTILE RANGE) IN THE POLLUTANT AND PREVALENCE OF ASTHMATIC AND ALLERGIC SYMPTOMS

<table>
<thead>
<tr>
<th>Exposure Variable</th>
<th>Asthmatic/Spastic Obstructive Bronchitis</th>
<th>Hay Fever</th>
<th>Eczema</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM$_{2.5}$ (per 1.0 µg/m3)</td>
<td>1.12 (0.94–1.29)</td>
<td>1.01 (0.91–1.12)</td>
<td>1.00 (0.97–1.04)</td>
</tr>
<tr>
<td>PM$_{2.5}$ absorbance (per 0.2*10$^{-5}$ m$^{-1}$)</td>
<td>1.56 (1.03–2.37)</td>
<td>1.59 (1.11–2.27)</td>
<td>1.03 (0.86–1.24)</td>
</tr>
<tr>
<td>NO$_x$ (per 6.4 µg/m3)</td>
<td>1.04 (0.67–1.39)</td>
<td>1.05 (0.77–1.45)</td>
<td>1.18 (1.00–1.39)</td>
</tr>
<tr>
<td>Distance to nearest main road <50 m (yes vs. no)</td>
<td>2.508 (per 0.2)</td>
<td>1.35 (per 0.2)</td>
<td>0.96 (per 0.2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Doctor-diagnosed Diseases</th>
<th>Parental Reports of Symptoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asthmatic/Spastic Obstructive Bronchitis</td>
<td>Symptoms for Asthmatic/Spastic Obstructive Bronchitis</td>
</tr>
<tr>
<td>Hay Fever</td>
<td>Symptoms for Hay Fever</td>
</tr>
<tr>
<td>Eczema</td>
<td>Symptoms for Eczema</td>
</tr>
</tbody>
</table>

Definition of abbreviation: abs = absorbance.

Values are adjusted for sex, age, parental atopy, maternal education, siblings, environmental tobacco smoke at home, use of gas for cooking, home dampness, indoor molds, keeping of dogs and cats.
and the particle distribution change greatly with increasing distance to major roads (40, 41). Those living very close to a major road are likely to be exposed not only to a higher amount of traffic-derived particles and gases but also to a more freshly emitted aerosol, which may be more toxic. This assumption is strengthened by the strong dose–response relationship, which has been found in our study. Our study, however, could not disentangle the effects between the distances to the roads and the pollutants, because a major component of the modeled pollutants is the distance to the different road types.

Because we assessed the individual-based exposure models to the addresses at three different time points and built longitudinal models, we could incorporate the residential history of the study participants very precisely and we did not have to exclude children who moved within the first 6 years of life in the Munich metropolitan area. Moreover, these data were advantageous because we could track the children’s living habits and use this information for more detailed analyses. Furthermore, we took residual confounding into account. However, the building structure in old European cities like Munich showed that a substantial fraction of the Munich population is living rather close to busy roads and living close to busy roads is not restricted to less advantaged people (42). Income turned out not to be a confounding factor in the present analyses. As in most epidemiologic studies, looking at confounding factors was limited to the questionnaire-derived variables. One has to bear in mind that confounding and exposure misclassifications are limitations of this study.

In conclusion, our findings provide strong evidence for the adverse effects of traffic-related air pollutants on atopic diseases as well as on allergic sensitization. The results regarding allergic symptoms contribute substantially to the current knowledge of traffic exposure and allergic sensitization (4–9, 30–39). We found negative effects for children living closer than 50 m from a busy road, with declining effects for children living farther measured PM$_{2.5}$ absorbance. We were unable to differentiate between heavy- and light-duty vehicles. Several other studies have shown that trucks (most often fueled with diesel) are associated with reduced lung function and increased prevalence of chronic respiratory symptoms (33, 34). In general, our findings concerning respiratory illness and their symptoms are consistent with the literature (35–39).

Because our GIS-based models comprise mainly broad-scale predictors (17), we could more accurately determine the local associations using the distance measurements. This allowed us to assess exposure to a less diluted aerosol and to a fresh motor vehicle–originated aerosol. Traffic-related particles coagulate and condensate within seconds after emission. The composition of

Table 4. Association (Odds Ratios) between an Increase (per Interquartile Range) in the Pollutant and Allergic Sensitization at 6 Years of Age

<table>
<thead>
<tr>
<th>Exposure Variable</th>
<th>Any Inhalant Sensitization*</th>
<th>Outdoor Positive*</th>
<th>Indoor Positive*</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM$_{2.5}$ (per 1.5 µg/m3)</td>
<td>1.45 (1.21–1.74)</td>
<td>1.52 (1.23–1.87)</td>
<td>0.92 (0.66–1.46)</td>
</tr>
<tr>
<td>PM$_{2.5}$ abs (per 0.4*10$^{-3}$ m$^{-1}$)</td>
<td>1.40 (1.20–1.64)</td>
<td>1.36 (1.14–1.63)</td>
<td>0.92 (0.69–1.50)</td>
</tr>
<tr>
<td>NO$_2$ (per 8.5 µg/m3)</td>
<td>1.03 (0.86–1.25)</td>
<td>1.00 (0.81–1.23)</td>
<td>0.95 (0.66–1.42)</td>
</tr>
<tr>
<td>Distance to nearest main road <50 m (yes vs. no)</td>
<td>1.30 (1.02–1.66)</td>
<td>1.33 (1.00–1.78)</td>
<td>1.07 (0.88–1.90)</td>
</tr>
</tbody>
</table>

Definition of abbreviation: abs = absorbance.

Positive – IgE antibodies ≥ 0.35 kU/L. Values are adjusted for sex, age, parental atopy, maternal education, siblings, environmental tobacco smoke at home, use of gas for cooking, home dampness, indoor molds, keeping of dogs and cats.

* Defined as in Table 1: any inhalant sensitization (outdoor positive or indoor positive) outdoor positive (timothy grass, rye, birch, mugwort) indoor positive (house dust mite, cat, dog, molds).

Figure 2. Association (odds ratios) between distance to nearest road (reference, >1,000 m) and prevalence of asthma and allergic symptoms. aAdjusted for sex, age, parental atopy, maternal education, siblings, environmental tobacco smoke at home, use of gas for cooking, home dampness, indoor molds, keeping of dogs and cats. Circles, distance to nearest main road <50 m; inverted triangles, distance to nearest main road 50–250 m; squares, distance to nearest main road 250–1,000 m; diamonds, distance to nearest main road >1,000 m.
away, and speculate that this reflects exposure to a traffic-related aerosol.

Conflict of Interest Statement: None of the authors has a financial relationship with a commercial entity that has an interest in the subject of this manuscript.

The GINI study group consists of the following members: Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Epidemiology, Munich (H. E. Wichmann, J. Heinrich, A. Schoetzau, M. Mosetter, J. Schindler, A. Hönke, K. Franke, B. Laubereau, S. Sausenthaler, A. Thaçi, A. Zimglil, A. Zutavern); Department of Pediatrics, Marien-Hospital, Wesel (D. Berdel, A. von Berg, C. Scholten, C. Bollrath, I. Groß, M. Møllemann); Department of Pediatrics, Ludwig Maximilians University, Munich (S. Koletzko, D. Reinhard, H. Behrendt, H. E. Wichmann, J. Buttner, C. Traidl-Hoffmann); Pediatric Immunology, Ludwig Maximilians University, Munich (S. Krauss-Etschmann).

The LISA study group consists of the following members: Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Epidemiology, Munich (H. E. Wichmann, J. Heinrich, G. Bölte, P. Belcredí, B. Jacob, A. Schoetzau, M. Mosetter, J. Schindler, A. Hönke, K. Franke, B. Laubereau, S. Sausenthaler, A. Thaçi, A. Zimglil, A. Zutavern); Department of Pediatrics, University of Leipzig (M. Borte, R. Schulz, G. Sierig, K. Mirov, C. Gebauer, B. Schulze); Department of Pediatrics, St. Georg Hospital, Leipzig (M. Borte, U. Dietz, S. Straub); University of Leipzig, Institute of Clinical Immunology and Transfusion Medicine, Leipzig (I. Lehmann, U. Rack); Department of Pediatrics, Marien-Hospital, Wesel (A. von Berg, C. Scholten, C. Bollrath, I. Groß, M. Møllemann); Bad Honnef (B. Schaal); Department of Human Exposure Research and Epidemiology, UFZ–Center for Environmental Research Leipzig-Halle (O. Herbarth, M. Bauer, U. Franck, C. Graebt, A. Mueller, M. Rehwagen, M. Richter, S. Roeder, U. Rolle-Kampczyk, U. Schlink, S. Albrecht, A. Jorks); Department of Environmental Immunology, UFZ–Center for Environmental Research Leipzig-Halle (I. Lehmann, G. Herberth, C. Daegeleman); Department of Pediatrics/Infectious Diseases and Immunology, Ludwig Maximilians University, Munich (M. Weiss, M. Albert); Institute of Clinical Immunology, Friedrich-Schiller-University, Jena (B. Fahlbusch); Institute of Social, Occupational, and Environmental Medicine (W. Bischof, A. Koch); Institut für Umweltmedizinische Forschung, Düsseldorf (U. Krämer, E. Link, U. Ranft, R. Schins, D. Sugiri); Department of Pediatrics, Technical University, Munich (C. P. Bauer, I. Brockow, A. Grübl); Department of Dermatology, Technical University, Munich (J. Ring, J. Grosch, U. Darsow, S. Weidinger); Center for Allergy and Environment, Technical University, Munich (H. Behrendt, A. Kasche, J. Buttner, C. Traidl-Hoffmann); CCG Pediatric Immunology, Ludwig Maximilians University, Munich, and Helmholtz Zentrum München, German Research Center for Environmental Health, Munich (S. Krauss-Etschmann); Institute of Social Medicine, University of Luebeck, Luebeck (T. Schafer).

Acknowledgments: The authors acknowledge Marie Cox for her help with editing. The authors thank all families for their participation in the LISA and GINI studies.

References

AUTHOR QUERIES

1. Au: Please spell out WZU, ZAUM, and UFZ in Affiliations.
2. Au: Please add city name for Environmental Science Center.
3. Au: Please spell out BMU and check expansion of IUF.
4. Au: Please provide professional degree for corresponding author.
5. Au: “Long-term exposure to particulate matter (PM$_{2.5}$), PM$_{2.5}$ absorbance, and long-term exposure to nitrogen dioxide... were assessed” intended? Please check wording.
6. Au: Delete “data of” here?
7. Au: “or” ok as added? Or please amend to clarify.
8. Au: Please spell out CAP and FEIA in CAP-RAST FEIA.
10. Au: PM2.5 ok as defined?
11. Au: Please supply name/location of manufacturers for Harvard impactors and Palmes tubes.
12. Au: GEE ok as expanded?
13. Au: Please provide expansion for PIAMA.
14. Au: Do edits for wording “A study in” preserve your intent?
15. Au: More information available for Bad Honnef (eg, city name, department)?
16. Au: Text in ref 2 appears to be a website address; however, link not found. Please clarify and, if web address, please also supply date on which site was accessed.
17. Au: Please provide name/location of publisher (or website address and date of access) for ref 3.
18. Au: In ref 9, please provide name/location of publisher.
19. Au: In ref 17, please check author’s first-name initials “vH”?
20. Au: Web site from 2001 correct? Also, please add date on which site was accessed, in Ref 21.
21. Au: Volume number ok as edited in ref 31?
22. Au: Please clarify journal volume number in ref 35.
24. Au: Please provide asterisk callout symbol in Figure 1 art, to correspond with footnote in legend.
25. Au/Editor: Note that Figs 2 and 3 were supplied as low-resolution art.
26. Au: Footnote callout symbol does not appear to be present in Fig 2 art. Please check. Please also check Fig 3.
27. Au: Should there be a multi dot (or other) between 10$^{-5}$ and m$^{-1}$ in table? Please check throughout.
28. Au: Please clarify significance of asterisk (is this a math symbol here?), and supply missing symbol(s) in 10 – 5m$^{-1}$. Please also check Table 4.
29. Au: Please explain significance of values in bold face, in table footnote, for Tables 3 and 4.
30. Au: Please supply correspond footnote callout in table body to correspond to table footnote, if necessary, and add symbol to footnote. See also Table 4.
31. Au: Note that Ref 13 is missing in References and in text. Please add missing reference, or if References are numbered incorrectly, please renumber here and in text accordingly.